Identifying Irrigation Strategies for Improved Agricultural Water Productivity in Irrigated Maize Production through Crop Simulation Modelling

نویسندگان

  • Geneille E. Greaves
  • Yu-Min Wang
چکیده

Identifying irrigation strategies that improve agricultural water use efficiency (WUE) have a pivotal role to play in sustainable water development. In this study, the AquaCrop model was used to examine the impact of different irrigation scheduling options on yields to identify viable strategies to enhance WUE for irrigated maize. Two scheduling scenarios at water application depths ranging from 20 to 50 mm were investigated: schedules based on allowable depletion of total available water (TAW) in the root zone and interval schedules based on irrigating at predefined daily intervals. For both scenarios, simulated yields, seasonal water applied and percent percolation loss were within the range of 9.16 to 10.22 ton/ha, 180 to 950 mm and 0–61%, respectively. The WUE in terms of water applied (WUEIrr) and crop evapotranspiration (WUEET) ranged from 1.07 to 5.48 kg/m3 and 2.42 to 4.42 kg/m3, respectively. The results revealed that depletion levels of 40–50% TAW at water depths of 20–40 mm could be used to obtain high WUE without significant yield penalty. Moreover, a good balance between yield, improved WUEET and percolation reduction was observed at water depths of 30–40 mm for daily intervals with water applied during the vegetative-reproductive stage of 7–5, 10–5 and 10–7. The identified strategies can contribute to the development of best management practices for water conservation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Crop Water Productivity Using a Coupled SWAT–MODSIM Model

This study examines the water productivity of irrigated wheat and maize yields in Karkheh River Basin (KRB) in the semi-arid region of Iran using a coupled modeling approach consisting of the hydrological model (SWAT) and the river basin water allocation model (MODSIM). Dynamic irrigation requirements instead of constant time series of demand were considered. As the cereal production of KRB pla...

متن کامل

Improving Water Sustainability and Food Security through Increased Crop Water Productivity in Malawi

Agriculture accounts for most of the renewable freshwater resource withdrawals in Malawi, yet food insecurity and water scarcity remain as major challenges. Despite Malawi’s vast water resources, climate change, coupled with increasing population and urbanisation are contributing to increasing water scarcity. Improving crop water productivity has been identified as a possible solution to water ...

متن کامل

High-yield irrigated maize in the Western U.S. Corn Belt: II. Irrigation management and crop water productivity

Appropriate benchmarks for water productivity (WP), defined here as the amount of grain yield produced per unit of water supply, are needed to help identify and diagnose inefficiencies in crop production and water management in irrigated systems. Such analysis is lacking for maize in the Western U.S. Corn Belt where irrigated production represents 58% of total maize output. The objective of thi...

متن کامل

Sustainable crop intensification through surface water irrigation in Bangladesh? A geospatial assessment of landscape-scale production potential

Changing dietary preferences and population growth in South Asia have resulted in increasing demand for wheat and maize, along side high and sustained demand for rice. In the highly productive northwestern Indo-Gangetic Plains of South Asia, farmers utilize groundwater irrigation to assure that at least two of these crops are sequenced on the same field within the same year. Such double croppin...

متن کامل

Yield potential and resource-use efficiency of maize systems in the western U.S. Corn Belt

Unlike the Central and Eastern U.S. Corn Belt where maize is grown almost entirely under rainfed conditions, maize in the Western Corn Belt is produced under both irrigated (3.2 million ha) and rainfed maize (4.1 million ha) conditions. Simulation modelling, regression, and boundary-function analysis were used to assess constraints to maize productivity in the Western Corn Belt. Aboveground bio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017